Skip to contents



Installation

IMPORTANT NOTE: geneOncoX requires that you have R version 4.1 or higher installed


if (!("remotes" %in% installed.packages())) {
install.packages("remotes")
}
remotes::install_github('sigven/geneOncoX')



Get basic gene annotations

This shows how to retrieve basic gene and cancer relevant gene annotations, including how to retrieve tumor suppressor genes, proto-oncogenes, and predicted cancer driver genes.

library(geneOncoX)

## load the data
download_dir <- tempdir()

gene_basic <- get_basic(cache_dir = download_dir)
#> INFO  [2024-11-12 09:27:27] Downloading remote dataset from Google Drive to cache_dir
#> INFO  [2024-11-12 09:27:32] Reading from cache_dir = '/tmp/RtmpKCOMyK', argument force_download = FALSE
#> INFO  [2024-11-12 09:27:32] Object 'gene_basic' sucessfully loaded
#> INFO  [2024-11-12 09:27:32] md5 checksum is valid: 3410a40199553afb959614aedad8fdd6
#> INFO  [2024-11-12 09:27:32] Retrieved 64902 records

## Number of records
nrow(gene_basic$records)
#> [1] 64902

## Show metadata for underlying resources
gene_basic$metadata
#>                             source
#> 1                       CancerMine
#> 2          Network of Cancer Genes
#> 3                          IntoGen
#> 4               Cancer Gene Census
#> 5                             NCBI
#> 6        Bailey et al., Cell, 2018
#> 7  Sanchez-Vega et al., Cell, 2018
#> 8                            F1CDx
#> 9                           TSO500
#> 10        DNA repair gene database
#> 11                          dbNSFP
#> 12                            CPIC
#>                                                                             source_description
#> 1          Predicted tumor suppressors/oncogenes/cancer drivers from text mining of literature
#> 2                                                                  Tumor suppressors/oncogenes
#> 3                                                                Predicted cancer driver genes
#> 4  Collection of cancer-relevant genes (soma/germline), tumor suppressors/oncogene annotations
#> 5        Basic gene identifiers (symbol, entrez ID, HGNC ID, name, synonyms, function summary)
#> 6                           Predicted cancer driver genes / likely false positive driver genes
#> 7                                         Collection of curated signalling pathway annotations
#> 8                      Collection of genes covered by Foundation One's F1CDx cancer gene panel
#> 9                           Collection of genes covered by Illumina's TSO500 cancer gene panel
#> 10                                                  Collection of genes involved in DNA repair
#> 11             Gene indispensability prediction, loss-of-function intolerance predictions etc.
#> 12              Clinical Pharmacogenomics Implementation Consortium - gene/oncology drug pairs
#>                                                                   source_url
#> 1                                         http://bionlp.bcgsc.ca/cancermine/
#> 2                                                      http://ncg.kcl.ac.uk/
#> 3                                           https://www.intogen.org/download
#> 4                                         https://cancer.sanger.ac.uk/census
#> 5                                         https://www.ncbi.nlm.nih.gov/gene/
#> 6                                  https://pubmed.ncbi.nlm.nih.gov/29625053/
#> 7                                  https://pubmed.ncbi.nlm.nih.gov/29625050/
#> 8                  https://www.foundationmedicine.com/test/foundationone-cdx
#> 9  https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260089
#> 10                        https://panelapp.genomicsengland.co.uk/panels/256/
#> 11                              https://sites.google.com/site/jpopgen/dbNSFP
#> 12                                          https://cpicpgx.org/genes-drugs/
#>                                            source_citation   source_version
#> 1                Lever et al., Nat Methods, 2019; 31110280 v50 (March 2023)
#> 2               Repana et al., Genome Biol, 2019; 30606230             v7.1
#> 3  Martínez-Jiménez et al., Nat Rev Cancer, 2020; 32778778       2023.05.31
#> 4            Sondka et al., Nat Rev Cancer, 2018; 30293088             v100
#> 5          Brown et al., Nucleic Acids Res, 2015; 25355515       2024-11-12
#> 6                      Bailey et al., Cell, 2018; 29625053             <NA>
#> 7                Sanchez-Vega et al., Cell, 2018; 29625050             <NA>
#> 8                                                     <NA>             <NA>
#> 9                                                     <NA>             <NA>
#> 10                   Woods et al., Science, 2001; 11181991             v1.1
#> 11                  Liu et al., Genome Med, 2020; 33261662             v4.8
#> 12           Caudle et al.,Curr Drug Metab, 2014; 24479687             <NA>
#>    source_abbreviation
#> 1           cancermine
#> 2                  ncg
#> 3              intogen
#> 4                  cgc
#> 5                 ncbi
#> 6           bailey2018
#> 7      sanchezvega2018
#> 8       foundation_one
#> 9             illumina
#> 10     woods_dnarepair
#> 11              dbnsfp
#> 12                cpic
#>                                                              source_license
#> 1                                                                   CC0 1.0
#> 2                                                          Free/open access
#> 3                                                                   CC0 1.0
#> 4  Free for non-commercial, academic use. Commercial use requires licensing
#> 5                                                  NCBI data usage policies
#> 6                                                          Free/open access
#> 7                                                          Free/open access
#> 8                                                          Free/open access
#> 9                                                          Free/open access
#> 10                                                         Free/open access
#> 11                                   Free for non-commercial, academic use.
#> 12                                                                  CC0 1.0
#>                                        source_license_url
#> 1      https://creativecommons.org/publicdomain/zero/1.0/
#> 2                                                    <NA>
#> 3      https://creativecommons.org/publicdomain/zero/1.0/
#> 4              https://cancer.sanger.ac.uk/cosmic/license
#> 5  https://www.ncbi.nlm.nih.gov/home/about/policies/#data
#> 6                                                    <NA>
#> 7                                                    <NA>
#> 8                                                    <NA>
#> 9                                                    <NA>
#> 10                                                   <NA>
#> 11                                                   <NA>
#> 12                                                   <NA>



Get classified tumor suppressor genes


## Get tumor suppressor genes - as indicated from either
## Cancer Gene Census (CGC) or Network of Cancer Genes (NCG)
## - show literature support from CancerMine

tsg <- gene_basic$records |>
  dplyr::filter(cgc_tsg == TRUE |
                  ncg_tsg == TRUE) |>
  dplyr::select(symbol, entrezgene, name, gene_biotype,
                cgc_tsg, ncg_tsg, cancermine_cit_links_tsg, 
                ncbi_function_summary) |>
  dplyr::rename(support_cancermine = cancermine_cit_links_tsg)

## Make as datatable
tsg_table <- DT::datatable(
  tsg, 
  escape = FALSE,
  extensions = c("Buttons", "Responsive"), 
  width = "100%",
  options = list(
    buttons = c("csv", "excel"), dom = "Bfrtip"))




Get classified proto-oncogenes


## Get proto-oncogenes - as indicated from either
## Cancer Gene Census (CGC) or Network of Cancer Genes (NCG),
## - show literature support from CancerMine
oncogene <- gene_basic$records |>
  dplyr::filter(cgc_oncogene == TRUE |
                  ncg_oncogene == TRUE) |>
  dplyr::select(symbol, entrezgene, 
                name, gene_biotype,
                cgc_tsg, ncg_tsg, 
                cancermine_cit_links_oncogene, 
                ncbi_function_summary) |>
  dplyr::rename(support_cancermine = 
                  cancermine_cit_links_oncogene)

## Make as datatable
oncogene_table <- DT::datatable(
  oncogene, 
  escape = FALSE,
  extensions = c("Buttons", "Responsive"), 
  width = "100%",
  options = list(
    buttons = c("csv", "excel"), 
    dom = "Bfrtip"))




Get predicted cancer driver genes


## Get predicted cancer driver genes - as indicated from either
## - Cancer Gene Census (CGC) - tier1/tier2
## - Network of Cancer Genes (NCG) - canonical drivers
## - IntOGen mutational driver catalogue
## - TCGA's PanCancer driver prediction (Bailey et al., Cell, 2018)
##
##  Rank hits by how many sources that contribute to classification
##
cancer_driver <- gene_basic$records |>
  dplyr::filter(cgc_driver_tier1 == TRUE |
                cgc_driver_tier2 == TRUE |
                intogen_driver == TRUE |
                ncg_driver == TRUE |
                tcga_driver == TRUE) |>
  dplyr::mutate(driver_score = 0) |>
  dplyr::mutate(driver_score = dplyr::if_else(
    cgc_driver_tier1 == T, 
    driver_score + 2,
    as.numeric(driver_score))) |>
  dplyr::mutate(driver_score = dplyr::if_else(
    cgc_driver_tier2 == T, 
    driver_score + 1,
    as.numeric(driver_score))) |>
  dplyr::mutate(driver_score = dplyr::if_else(
    intogen_driver == T, 
    driver_score + 1,
    as.numeric(driver_score))) |>
  dplyr::mutate(driver_score = dplyr::if_else(
    ncg_driver == T, 
    driver_score + 1,
    as.numeric(driver_score))) |>
  dplyr::mutate(driver_score = dplyr::if_else(
    tcga_driver == T, 
    driver_score + 1,
    as.numeric(driver_score))) |>
  dplyr::select(symbol, entrezgene, 
                name, gene_biotype,
                cgc_driver_tier1,
                cgc_driver_tier2,
                intogen_driver,
                #intogen_phenotype,
                intogen_role,
                ncg_driver,
                ncg_phenotype,
                tcga_driver,
                driver_score,
                cancermine_cit_links_driver, 
                ncbi_function_summary) |>
  dplyr::rename(support_cancermine = 
                  cancermine_cit_links_driver) |>
  dplyr::arrange(dplyr::desc(driver_score), symbol)

## Make as datatable
driver_table <- DT::datatable(
  cancer_driver, 
  escape = FALSE,
  extensions = c("Buttons", "Responsive"), 
  width = "100%",
  options = list(
    buttons = c("csv", "excel"), 
    dom = "Bfrtip"))




Get cancer predisposition genes

This show how to retrieve known cancer predisposition genes, utilizing multiple sources, including Cancer Gene Census, Genomics England PanelApp, TCGA’s pan-cancer study of germline variants, and other/user-curated entries.


## load the data
gene_predisposition <- get_predisposition(cache_dir = download_dir)
#> INFO  [2024-11-12 09:27:33] Downloading remote dataset from Google Drive to cache_dir
#> INFO  [2024-11-12 09:27:34] Reading from cache_dir = '/tmp/RtmpKCOMyK', argument force_download = FALSE
#> INFO  [2024-11-12 09:27:34] Object 'gene_predisposition' sucessfully loaded
#> INFO  [2024-11-12 09:27:34] md5 checksum is valid: 91a4abffde115e04fac9e4c366edb2f4
#> INFO  [2024-11-12 09:27:34] Retrieved 611 records

## Number of cancer predisposition genes
nrow(gene_predisposition$records |> dplyr::filter(
  !stringr::str_detect(cpg_source, "^ACMG_SF$")
))
#> [1] 564

## Get statistics regarding how reference sources on 
## cancer predisposition genes contribute
##
## CGC - Cancer Gene Census (germline)
## PANEL_APP - N = 43 gene panels for inherited cancer conditions/
##             cancer syndromes (Genomics England PanelApp)
## CURATED_OTHER - curated/user-contributed genes
## TCGA_PANCAN_2018 - TCGA's pancancer analysis of
##                    germline variants in cancer
##                    (Huang et al., Cell, 2019)
## ACMG_SF - Secondary findings list (ACMG, v3.1)
plyr::count(gene_predisposition$records$cpg_source) |>
  dplyr::arrange(dplyr::desc(freq)) |>
  dplyr::filter(x != "ACMG_SF")
#>                                         x freq
#> 1                               PANEL_APP  281
#> 2                           CURATED_OTHER  107
#> 3          CGC&PANEL_APP&TCGA_PANCAN_2018   57
#> 4              PANEL_APP&TCGA_PANCAN_2018   45
#> 5  ACMG_SF&CGC&PANEL_APP&TCGA_PANCAN_2018   28
#> 6                                     CGC   14
#> 7                        TCGA_PANCAN_2018   14
#> 8                           CGC&PANEL_APP    8
#> 9                    CGC&TCGA_PANCAN_2018    4
#> 10                      ACMG_SF&PANEL_APP    2
#> 11               ACMG_SF&TCGA_PANCAN_2018    2
#> 12                            ACMG_SF&CGC    1
#> 13           ACMG_SF&CGC&TCGA_PANCAN_2018    1


## Cancer predisposition metadata
gene_predisposition$metadata
#>                                        source
#> 1                   Genomics England PanelApp
#> 2                          Cancer Gene Census
#> 3                                        NCBI
#> 4                    Huang et al., Cell, 2018
#> 5        Maxwell et al., Am J Hum Genet, 2016
#> 6 Cancer predisposition genes - curated/other
#> 7                   ACMG - secondary findings
#>                                                                               source_description
#> 1 Collection of > 40 dedicated gene panels for various inherited cancer conditions and syndromes
#> 2    Collection of cancer-relevant genes (soma/germline), tumor suppressors/oncogene annotations
#> 3          Basic gene identifiers (symbol, entrez ID, HGNC ID, name, synonyms, function summary)
#> 4                   Collection of cancer predisposition genes screened in TCGA's pancancer study
#> 5                                      Mechanisms of inheritance for cancer predisposition genes
#> 6                         Candidate cancer predisposition genes - contributed e.g. by CPSR users
#> 7            Genes recommended for reporting of incidental findings in clinical exome sequencing
#>                                  source_url
#> 1   https://panelapp.genomicsengland.co.uk/
#> 2        https://cancer.sanger.ac.uk/census
#> 3        https://www.ncbi.nlm.nih.gov/gene/
#> 4 https://pubmed.ncbi.nlm.nih.gov/29625052/
#> 5 https://pubmed.ncbi.nlm.nih.gov/27153395/
#> 6                                      <NA>
#> 7 https://pubmed.ncbi.nlm.nih.gov/35802134/
#>                                   source_citation source_version
#> 1        Martin et al., Nat Genet, 2019; 31676867       v1 (API)
#> 2   Sondka et al., Nat Rev Cancer, 2018; 30293088           v100
#> 3 Brown et al., Nucleic Acids Res, 2015; 25355515     2024-11-12
#> 4              Huang et al., Cell, 2018; 29625052           <NA>
#> 5  Maxwell et al., Am J Hum Genet, 2016; 27153395           <NA>
#> 6                                            <NA>       20221128
#> 7        Miller et al., Genet Med, 2023; 37347242           v3.2
#>   source_abbreviation
#> 1                gepa
#> 2                 cgc
#> 3                ncbi
#> 4    tcga_pancan_2018
#> 5         maxwell2016
#> 6           cpg_other
#> 7             acmg_sf
#>                                                             source_license
#> 1                               Commercial use requires separate agreement
#> 2 Free for non-commercial, academic use. Commercial use requires licensing
#> 3                                                 NCBI data usage policies
#> 4                                                         Free/open access
#> 5                                                         Free/open access
#> 6                                                         Free/open access
#> 7                                                         Free/open access
#>                                                                                 source_license_url
#> 1 https://panelapp.genomicsengland.co.uk/media/files/GEL_-_PanelApp_Terms_of_Use_December_2019.pdf
#> 2                                                       https://cancer.sanger.ac.uk/cosmic/license
#> 3                                           https://www.ncbi.nlm.nih.gov/home/about/policies/#data
#> 4                                                                                             <NA>
#> 5                                                                                             <NA>
#> 6                                                                                             <NA>
#> 7                                                  https://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/



Get cancer gene panels

This shows how to retrieve genes from cancer gene panels defined in Genomics England PanelApp.


## load the data
gene_panels <- get_panels(cache_dir = download_dir)
#> INFO  [2024-11-12 09:27:35] Downloading remote dataset from Google Drive to cache_dir
#> INFO  [2024-11-12 09:27:36] Reading from cache_dir = '/tmp/RtmpKCOMyK', argument force_download = FALSE
#> INFO  [2024-11-12 09:27:36] Object 'gene_panels' sucessfully loaded
#> INFO  [2024-11-12 09:27:36] md5 checksum is valid: 0ff8914f8b38e72624794c26e14bbbbd
#> INFO  [2024-11-12 09:27:36] Retrieved 2612 records

## panel data for genome build grch38
panel_data <- gene_panels$records |>
  dplyr::filter(genome_build == "grch38")

## show number of genes in each panel
gene_freq <- as.data.frame(panel_data |>
  dplyr::group_by(gepa_panel_name) |>
  dplyr::summarise(n = dplyr::n()) |>
  dplyr::arrange(desc(n)) |>
  dplyr::rename(panel_name = gepa_panel_name))

gene_freq
#>                                                                  panel_name   n
#> 1                          DNA Repair Genes pertinent cancer susceptibility 178
#> 2                                                   Childhood solid tumours 121
#> 3                         Haematological malignancies cancer susceptibility 108
#> 4                                 Adult solid tumours cancer susceptibility 105
#> 5                              Haematological malignancies for rare disease  89
#> 6                             Childhood solid tumours cancer susceptibility  85
#> 7                                      Adult solid tumours for rare disease  58
#> 8                                    Multiple monogenic benign skin tumours  46
#> 9                                                    Sarcoma susceptibility  44
#> 10                                            Sarcoma cancer susceptibility  33
#> 11                                                         GI tract tumours  31
#> 12                                                 Neurofibromatosis Type 1  30
#> 13                                   Inherited non-medullary thyroid cancer  29
#> 14                                                   Familial breast cancer  27
#> 15                         Inherited ovarian cancer (without breast cancer)  26
#> 16    Familial Tumours Syndromes of the central & peripheral Nervous system  21
#> 17                            Inherited phaeochromocytoma and paraganglioma  20
#> 18 Inherited polyposis and early onset colorectal cancer - germline testing  19
#> 19                                                Familial rhabdomyosarcoma  18
#> 20                                                   Inherited renal cancer  18
#> 21                Inherited predisposition to acute myeloid leukaemia (AML)  16
#> 22                                               Multiple endocrine tumours  16
#> 23                                                 Familial prostate cancer  14
#> 24                        Colorectal cancer pertinent cancer susceptibility  13
#> 25                                         Genodermatoses with malignancies  13
#> 26                                              Inherited pancreatic cancer  13
#> 27                     Head and neck cancer pertinent cancer susceptibility  12
#> 28                    Neuroendocrine cancer pertinent cancer susceptibility  12
#> 29                             Renal cancer pertinent cancer susceptibility  10
#> 30                           Ovarian cancer pertinent cancer susceptibility   9
#> 31                                                        Familial melanoma   8
#> 32                             Brain cancer pertinent cancer susceptibility   7
#> 33                            Breast cancer pertinent cancer susceptibility   7
#> 34                                         Inherited predisposition to GIST   7
#> 35                                                       Parathyroid Cancer   7
#> 36                       Endometrial cancer pertinent cancer susceptibility   6
#> 37                                Inherited MMR deficiency (Lynch syndrome)   5
#> 38                          Prostate cancer pertinent cancer susceptibility   5
#> 39                           Thyroid cancer pertinent cancer susceptibility   5
#> 40                           Bladder cancer pertinent cancer susceptibility   4
#> 41            Upper gastrointestinal cancer pertinent cancer susceptibility   4
#> 42                                 Melanoma pertinent cancer susceptibility   3
#> 43                                                Familial rhabdoid tumours   2
#> 44         Inherited susceptibility to acute lymphoblastoid leukaemia (ALL)   2



Get gene aliases

This shows how to retrieve ambiguous and unambiguous gene aliases (i.e. with respect to primary gene symbols).


## load the data
gene_alias <- get_alias(cache_dir = download_dir)
#> INFO  [2024-11-12 09:27:36] Downloading remote dataset from Google Drive to cache_dir
#> INFO  [2024-11-12 09:27:41] Reading from cache_dir = '/tmp/RtmpKCOMyK', argument force_download = FALSE
#> INFO  [2024-11-12 09:27:41] Object 'gene_alias' sucessfully loaded
#> INFO  [2024-11-12 09:27:41] md5 checksum is valid: 489f67b92b51647aaa6f978786d83fb6
#> INFO  [2024-11-12 09:27:41] Retrieved 138052 records

## number of gene synonyms that are ambiguous
nrow(dplyr::filter(gene_alias$records, ambiguous == TRUE))
#> [1] 7081

## show structure of alias records
head(gene_alias$records)
#>        alias      symbol entrezgene n_primary_map ambiguous source
#> 1   'C-K-RAS        KRAS       3845             1     FALSE   NCBI
#> 2     (FM-3)       NMUR1      10316             1     FALSE   NCBI
#> 3    (IV)-44 IGHVIV-44-1      28337             1     FALSE   NCBI
#> 4 (ppGpp)ase       HDDC3     374659             1     FALSE   NCBI
#> 5 A-116A10.1        NAE1       8883             1     FALSE   NCBI
#> 6  A-152E5.1       CCL22       6367             1     FALSE   NCBI
#>   is_primary_symbol other_index
#> 1             FALSE        <NA>
#> 2             FALSE        <NA>
#> 3             FALSE        <NA>
#> 4             FALSE        <NA>
#> 5             FALSE        <NA>
#> 6             FALSE        <NA>



Get GENCODE transcripts

This shows how to retrieve GENCODE transcripts for grch37 and grch38.


## load the data
gene_gencode <- get_gencode(cache_dir = download_dir)
#> INFO  [2024-11-12 09:27:41] Downloading remote dataset from Google Drive to cache_dir
#> INFO  [2024-11-12 09:27:53] Reading from cache_dir = '/tmp/RtmpKCOMyK', argument force_download = FALSE
#> INFO  [2024-11-12 09:27:53] Object 'gene_gencode_47_113' sucessfully loaded
#> INFO  [2024-11-12 09:27:53] md5 checksum is valid: 03e1f0b0e6ae0a43579d6d2337ef903c
#> INFO  [2024-11-12 09:27:53] Retrieved  records

## number of transcript records - grch37
nrow(gene_gencode$records$grch37)
#> [1] 196520

## number of transcript records - grch38
nrow(gene_gencode$records$grch38)
#> [1] 385659

## show colnames for transcript records
colnames(gene_gencode$records$grch38)
#>  [1] "chrom"                      "start"                     
#>  [3] "end"                        "transcript_start"          
#>  [5] "transcript_end"             "cds_start"                 
#>  [7] "strand"                     "ensembl_gene_id"           
#>  [9] "ensembl_gene_id_full"       "ensembl_transcript_id"     
#> [11] "ensembl_transcript_id_full" "ensembl_protein_id"        
#> [13] "symbol"                     "symbol_gencode"            
#> [15] "hgnc_id"                    "entrezgene"                
#> [17] "name"                       "gene_biotype"              
#> [19] "transcript_biotype"         "tag"                       
#> [21] "refseq_protein_id"          "refseq_transcript_id"      
#> [23] "mane_select"                "mane_plus_clinical"        
#> [25] "refseq_select"              "principal_isoform_flag"    
#> [27] "uniprot_acc"                "uniprot_id"                
#> [29] "ensembl_version"            "gencode_version"           
#> [31] "uniprot_version"

## show metadata for underlying resources
gene_gencode$metadata
#>            source
#> 1         GENCODE
#> 2 Ensembl Biomart
#> 3       UniprotKB
#> 4          APPRIS
#>                                                         source_description
#> 1                                                   Human gene transcripts
#> 2 API for retrieval of gene and transcript cross-references (MANE, RefSeq)
#> 3      UniProt identifiers and accessions with cross-references to Ensembl
#> 4                                 Prinicipal transcript isoform annotation
#>                                       source_url
#> 1                  https://www.gencodegenes.org/
#> 2       https://www.ensembl.org/biomart/martview
#> 3                        https://www.uniprot.org
#> 4 https://apprisws.bioinfo.cnio.es/landing_page/
#>                                         source_citation source_version
#> 1    Frankish et al., Nucleic Acids Res, 2021; 33270111             47
#> 2  Cunningham et al., Nucleic Acids Res, 2022; 34791404            113
#> 3 UniProt Consortium, Nucleic Acids Res, 2021; 33237286        2024_05
#> 4    Rodriguez et al, Nucleic Acids Res, 2022; 34755885     2024-11-12
#>   source_abbreviation        source_license
#> 1             gencode      Free/open access
#> 2             ensembl EMBL-EBI terms of use
#> 3             uniprot             CC BY 4.0
#> 4              appris      Free/open access
#>                             source_license_url
#> 1                                         <NA>
#> 2     https://www.ebi.ac.uk/about/terms-of-use
#> 3 https://creativecommons.org/licenses/by/4.0/
#> 4                                         <NA>



Get DNA repair genes


## load the data
gene_dna_repair <- gene_basic$records |>
  dplyr::filter(!is.na(woods_dnarepair_class)) |>
  dplyr::select(symbol, woods_dnarepair_class,
                woods_dnarepair_activity)

## count number of genes in each class
dna_repair_class_freq <- as.data.frame(
  gene_dna_repair |>
  dplyr::group_by(woods_dnarepair_class) |>
  dplyr::summarise(n = dplyr::n()) |>
  dplyr::arrange(desc(n)) |>
  dplyr::rename(dna_repair_class = woods_dnarepair_class))

dna_repair_class_freq
#>                                                                  dna_repair_class
#> 1                                                Nucleotide excision repair (NER)
#> 2                                                        Homologous recombination
#> 3                                                                  Fanconi anemia
#> 4                                            DNA polymerases (catalytic subunits)
#> 5                                       Other conserved DNA damage response genes
#> 6                                                      Base excision repair (BER)
#> 7                                                 Ubiquitination and modification
#> 8                                                  Mismatch excision repair (MMR)
#> 9              Other identified genes with known or suspected DNA repair function
#> 10                                               Editing and processing nucleases
#> 11                                                     Non-homologous end-joining
#> 12                                     Other BER and strand break joining factors
#> 13 Genes defective in diseases associated with sensitivity to DNA damaging agents
#> 14                                           Chromatin Structure and Modification
#> 15                                                      Direct reversal of damage
#> 16                                                 Modulation of nucleotide pools
#> 17                    Poly(ADP-ribose) polymerase (PARP) enzymes that bind to DNA
#> 18                                         Repair of DNA-topoisomerase crosslinks
#> 19                                                                        Unknown
#>     n
#> 1  28
#> 2  21
#> 3  17
#> 4  15
#> 5  15
#> 6  11
#> 7  11
#> 8  10
#> 9   9
#> 10  8
#> 11  7
#> 12  6
#> 13  5
#> 14  3
#> 15  3
#> 16  3
#> 17  3
#> 18  2
#> 19  1



Get TSO500 genes


## load the data
gene_tso500 <- gene_basic$records |>
  dplyr::filter(!is.na(illumina_tso500))

## number of genes covered by TSO500 panel
nrow(gene_tso500)
#> [1] 523

## types of variant types covered
illumina_tso500_variant_freq <- as.data.frame(
  gene_tso500 |>
  dplyr::group_by(illumina_tso500) |>
  dplyr::summarise(n = dplyr::n()) |>
  dplyr::arrange(desc(n)))

illumina_tso500_variant_freq
#>                 illumina_tso500   n
#> 1                     SNV_INDEL 433
#> 2            CNA_GAIN,SNV_INDEL  33
#> 3          RNA_FUSION,SNV_INDEL  31
#> 4 CNA_GAIN,RNA_FUSION,SNV_INDEL  22
#> 5 CNA_LOSS,RNA_FUSION,SNV_INDEL   2
#> 6            CNA_LOSS,SNV_INDEL   2



Session Info

# set eval = FALSE if you don't want this info (useful for reproducibility) 
# to appear
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.5 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] geneOncoX_1.0.1
#> 
#> loaded via a namespace (and not attached):
#>  [1] jsonlite_1.8.9    dplyr_1.1.4       compiler_4.4.2    crayon_1.5.3     
#>  [5] Rcpp_1.0.13-1     tidyselect_1.2.1  stringr_1.5.1     jquerylib_0.1.4  
#>  [9] systemfonts_1.1.0 textshaping_0.4.0 yaml_2.3.10       fastmap_1.2.0    
#> [13] plyr_1.8.9        R6_2.5.1          generics_0.1.3    curl_6.0.0       
#> [17] knitr_1.49        htmlwidgets_1.6.4 tibble_3.2.1      desc_1.4.3       
#> [21] bslib_0.8.0       pillar_1.9.0      rlang_1.1.4       DT_0.33          
#> [25] utf8_1.2.4        stringi_1.8.4     cachem_1.1.0      lgr_0.4.4        
#> [29] xfun_0.49         fs_1.6.5          sass_0.4.9        cli_3.6.3        
#> [33] withr_3.0.2       pkgdown_2.1.1     magrittr_2.0.3    crosstalk_1.2.1  
#> [37] digest_0.6.37     lifecycle_1.0.4   vctrs_0.6.5       evaluate_1.0.1   
#> [41] gargle_1.5.2      glue_1.8.0        ragg_1.3.3        googledrive_2.1.1
#> [45] fansi_1.0.6       httr_1.4.7        rmarkdown_2.29    purrr_1.0.2      
#> [49] tools_4.4.2       pkgconfig_2.0.3   htmltools_0.5.8.1



References

Bailey, Matthew H, Collin Tokheim, Eduard Porta-Pardo, Sohini Sengupta, Denis Bertrand, Amila Weerasinghe, Antonio Colaprico, et al. 2018. “Comprehensive Characterization of Cancer Driver Genes and Mutations.” Cell 173 (2): 371–385.e18. http://dx.doi.org/10.1016/j.cell.2018.02.060.
Lever, Jake, Eric Y Zhao, Jasleen Grewal, Martin R Jones, and Steven J M Jones. 2019. CancerMine: A Literature-Mined Resource for Drivers, Oncogenes and Tumor Suppressors in Cancer.” Nat. Methods 16 (6): 505–7. http://dx.doi.org/10.1038/s41592-019-0422-y.
Liu, Xiaoming, Chang Li, Chengcheng Mou, Yibo Dong, and Yicheng Tu. 2020. dbNSFP V4: A Comprehensive Database of Transcript-Specific Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs.” Genome Med. 12 (1): 103. http://dx.doi.org/10.1186/s13073-020-00803-9.
Martin, Antonio Rueda, Eleanor Williams, Rebecca E Foulger, Sarah Leigh, Louise C Daugherty, Olivia Niblock, Ivone U S Leong, et al. 2019. PanelApp Crowdsources Expert Knowledge to Establish Consensus Diagnostic Gene Panels.” Nat. Genet. 51 (November): 1560–65. http://dx.doi.org/10.1038/s41588-019-0528-2.
Martı́nez-Jiménez, Francisco, Ferran Muiños, Inés Sentı́s, Jordi Deu-Pons, Iker Reyes-Salazar, Claudia Arnedo-Pac, Loris Mularoni, et al. 2020. “A Compendium of Mutational Cancer Driver Genes.” Nat. Rev. Cancer 20 (10): 555–72. https://www.nature.com/articles/s41568-020-0290-x.
Repana, Dimitra, Joel Nulsen, Lisa Dressler, Michele Bortolomeazzi, Santhilata Kuppili Venkata, Aikaterini Tourna, Anna Yakovleva, Tommaso Palmieri, and Francesca D Ciccarelli. 2019. “The Network of Cancer Genes (NCG): A Comprehensive Catalogue of Known and Candidate Cancer Genes from Cancer Sequencing Screens.” Genome Biol. 20 (1): 1. http://dx.doi.org/10.1186/s13059-018-1612-0.
Sondka, Zbyslaw, Sally Bamford, Charlotte G Cole, Sari A Ward, Ian Dunham, and Simon A Forbes. 2018. “The COSMIC Cancer Gene Census: Describing Genetic Dysfunction Across All Human Cancers.” Nat. Rev. Cancer 18 (11): 696–705. http://dx.doi.org/10.1038/s41568-018-0060-1.
Wood, R D, M Mitchell, J Sgouros, and T Lindahl. 2001. “Human DNA Repair Genes.” Science 291 (5507): 1284–89. http://dx.doi.org/10.1126/science.1056154.